Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.675
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731942

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.


Acinar Cells , Carcinoma, Pancreatic Ductal , Metaplasia , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Reactive Oxygen Species , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mice , Reactive Oxygen Species/metabolism , Humans , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Metaplasia/metabolism , Metaplasia/genetics , Acinar Cells/metabolism , Acinar Cells/pathology , Mice, Transgenic , Chemokines, CC/metabolism , Chemokines, CC/genetics , Macrophage Inflammatory Proteins/metabolism , Macrophage Inflammatory Proteins/genetics , Pancreas/metabolism , Pancreas/pathology
2.
Protein Sci ; 33(6): e5016, 2024 Jun.
Article En | MEDLINE | ID: mdl-38747381

RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.


14-3-3 Proteins , Nanostructures , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/genetics , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Humans , Nanostructures/chemistry , Protein Multimerization , Protein Binding , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism
3.
Sci Signal ; 17(836): eadd5073, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743809

The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.


MAP Kinase Signaling System , NF-kappa B , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , MAP Kinase Signaling System/drug effects , Animals , Cell Line, Tumor , Mutation , Mice , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Melanoma/genetics , Melanoma/metabolism , Melanoma/drug therapy , Melanoma/pathology , Xenograft Model Antitumor Assays , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mice, Nude
4.
Nat Commun ; 15(1): 3741, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702301

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Animals , Drug Resistance, Neoplasm/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Neoplasm, Residual , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays
5.
Nanomedicine ; 55: 102714, 2024 Jan.
Article En | MEDLINE | ID: mdl-38738528

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor survival rates. Here, we evaluated iron-doped hydroxyapatite (FeHA) as a potential nanomedicine-based approach to combat PDAC. FeHA, in combination with a sublethal dose of the glutathione peroxidase 4 (GPX4) inhibitor RSL3, was found to trigger ferroptosis in KRAS mutant PANC-1 cells, but not in BxPC3 cells, while sparing normal human cells (fibroblasts and peripheral blood mononuclear cells). These findings were recapitulated in 3D spheroids generated using PDAC cells harboring wild-type versus mutant KRAS. Moreover, ferroptosis induction by FeHA plus RSL3 was reversed by the knockdown of STEAP3, a metalloreductase responsible for converting Fe3+ to Fe2+. Taken together, our data show that FeHA is capable of triggering cancer cell death in a KRAS-selective, STEAP3-dependent manner in PDAC cells.


Carcinoma, Pancreatic Ductal , Ferroptosis , Iron , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Iron/chemistry , Iron/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Ferroptosis/drug effects , Cell Line, Tumor , Nanoparticles/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
6.
Langmuir ; 40(19): 10157-10170, 2024 May 14.
Article En | MEDLINE | ID: mdl-38700902

I-Motif (iM) DNA structures represent among the most significant noncanonical nucleic acid configurations. iM-forming DNA sequences are found in an array of vital genomic locations and are particularly frequent in the promoter islands of various oncogenes. Thus, iM DNA is a crucial candidate for anticancer medicines; therefore, binding interactions between iM DNA and small molecular ligands, such as flavonoids, are critically important. Extensive sets of spectroscopic strategies and thermodynamic analysis were utilized in the present investigation to find out the favorable interaction of quercetin (Que), a dietary flavonoid that has various health-promoting characteristics, including anticancer properties, with noncanonical iM DNA structure. Spectroscopic studies and thermal analysis revealed that Que interacts preferentially with HRAS1 iM DNA compared with VEGF, BCL2 iM, and duplex DNA. Que, therefore, emerged as a suitable natural-product-oriented antagonist for targeting HRAS1 iM DNA. The innovative spectroscopic as well as mechanical features of Que and its specific affinity for HRAS1 iM may be useful for therapeutic applications and provide crucial insights for the design of compounds with remarkable medicinal properties.


DNA , Promoter Regions, Genetic , Proto-Oncogene Proteins p21(ras) , Quercetin , Quercetin/chemistry , Quercetin/pharmacology , Quercetin/metabolism , DNA/chemistry , DNA/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Thermodynamics , Humans , Nucleotide Motifs , Binding Sites
7.
Cell Signal ; 119: 111166, 2024 Jul.
Article En | MEDLINE | ID: mdl-38588876

The Dickkopf family proteins (DKKs) are strong Wnt signaling antagonists that play a significant role in colorectal cancer (CRC) development and progression. Recent work has shown that DKKs, mainly DKK1, are associated with the induction of chemoresistance in CRC and that DKK1 expression in cancer cells correlates with that of protein arginine N-methyltransferase 5 (PRMT5). This points to the presence of a regulatory loop between DKK1 and PRMT5. Herein, we addressed the question of whether PRMT5 contributes to DKK1 expression in CRC and hence CRC chemoresistance. Both in silico and in vitro approaches were used to explore the relationship between PRMT5 and different DKK members. Our data demonstrated that DKK1 expression is significantly upregulated in CRC clinical samples, KRAS-mutated CRC in particular and that the levels of DKK1 positively correlate with PRMT5 activation. Chromatin immunoprecipitation (ChIP) data indicated a possible epigenetic role of PRMT5 in regulating DKK1, possibly through the symmetric dimethylation of H3R8. Knockdown of DKK1 or treatment with the PRMT5 inhibitor CMP5 in combination with doxorubicin yielded a synergistic anti-tumor effect in KRAS mutant, but not KRAS wild-type, CRC cells. These findings suggest that PRMT5 regulates DKK1 expression in CRC and that inhibition of PRMT5 modulates DKK1 expression in such a way that reduces CRC cell growth.


Colorectal Neoplasms , Intercellular Signaling Peptides and Proteins , Protein-Arginine N-Methyltransferases , Humans , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Doxorubicin/pharmacology , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Drug Resistance, Neoplasm/drug effects
8.
Sci Rep ; 14(1): 8998, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637546

Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Signal Transduction , Cell Proliferation , Cell Line, Tumor , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
9.
Anal Chem ; 96(19): 7566-7576, 2024 May 14.
Article En | MEDLINE | ID: mdl-38684118

Genetically encoding proximal-reactive unnatural amino acids (PrUaas), such as fluorosulfate-l-tyrosine (FSY), into natural proteins of interest (POI) confer the POI with the ability to covalently bind to its interacting proteins (IPs). The PrUaa-incorporated POIs hold promise for blocking undesirable POI-IP interactions. Selecting appropriate PrUaa anchor sites is crucial, but it remains challenging with the current methodology, which heavily relies on crystallography to identify the proximal residues between the POIs and the IPs for the PrUaa anchorage. To address the challenge, here, we propose a footprinting-directed genetically encoded covalent binder (footprinting-GECB) approach. This approach employs carbene footprinting, a structural mass spectrometry (MS) technique that quantifies the extent of labeling of the POI following the addition of its IP, and thus identifies the responsive residues. By genetically encoding PrUaa into these responsive sites, POI variants with covalent bonding ability to its IP can be produced without the need for crystallography. Using the POI-IP model, KRAS/RAF1, we showed that engineering FSY at the footprint-assigned KRAS residue resulted in a KRAS variant that can bind irreversibly to RAF1. Additionally, we inserted FSY at the responsive residue in RAF1 upon footprinting the oncogenic KRASG12D/RAF1, which lacks crystal structure, and generated a covalent binder to KRASG12D. Together, we demonstrated that by adopting carbene footprinting to direct PrUaa anchorage, we can greatly expand the opportunities for designing covalent protein binders for PPIs without relying on crystallography. This holds promise for creating effective PPI inhibitors and supports both fundamental research and biotherapeutics development.


Methane , Methane/analogs & derivatives , Methane/chemistry , Humans , Protein Footprinting/methods , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Protein Binding , Mass Spectrometry
10.
Int Rev Cell Mol Biol ; 385: 1-39, 2024.
Article En | MEDLINE | ID: mdl-38663957

Cancer remains the leading cause of global mortality, prompting a paradigm shift in its treatment and outcomes with the advent of targeted therapies. Among the most prevalent mutations in RAS-driven cancers, Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations account for approximately 86% of cases worldwide, particularly in lung, pancreatic, and colon cancers, contributing to poor prognosis and reduced overall survival. Despite numerous efforts to understand the biology of KRAS mutants and their pivotal role in cancer development, the lack of well-defined drug-binding pockets has deemed KRAS an "undruggable" therapeutic target, presenting significant challenges for researchers and clinicians alike. Through significant biochemical and technological advances, the last decade has witnessed promising breakthroughs in targeted therapies for KRAS-mutated lung, colon, and pancreatic cancers, marking a critical turning point in the field. In this chapter, we provide an overview of the characteristics of KRAS mutations across various solid tumors, highlighting ongoing cutting-edge research on the immune microenvironment, the development of KRAS-driven mice models, and the recent progress in the exploration of specific KRAS mutant-targeted therapeutic approaches. By comprehensive understanding of the intricacies of KRAS signaling in solid tumors and the latest therapeutic developments, this chapter will shed light on the potential for novel therapeutic strategies to combat KRAS-driven tumors and improve patient outcomes.


Neoplasms , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Humans , Animals , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Signal Transduction/drug effects , Mutation , Molecular Targeted Therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Microenvironment/drug effects
11.
Anticancer Res ; 44(5): 1939-1946, 2024 May.
Article En | MEDLINE | ID: mdl-38677763

BACKGROUND/AIM: Macropinocytosis is a non-selective form of endocytosis that facilitates the uptake of extracellular substances, such as nutrients and macromolecules, into the cells. In KRAS-driven cancers, including pancreatic ductal adenocarcinoma, macropinocytosis and subsequent lysosomal utilization are known to be enhanced to overcome metabolic stress. In this study, we investigated the role of Casein Kinase 2 (CK2) inhibition in macropinocytosis and subsequent metabolic processes in KRAS mutant cholangiocarcinoma (CCA) cell lines. MATERIALS AND METHODS: The bovine serum albumin (BSA) uptake indicating macropinocytosis was performed by flow cytometry using the HuCCT1 KRAS mutant CCA cell line. To validate macropinosome, the Rab7 and LAMP2 were labeled and analyzed via immunocytochemistry and western blot. The CX-4945 (Silmitasertib), CK2 inhibitor, was used to investigate the role of CK2 in macropinocytosis and subsequent lysosomal metabolism. RESULTS: The TFK-1, a KRAS wild-type CCA cell line, showed only apoptotic morphological changes. However, the HuCCT1 cell line showed macropinocytosis. Although CX-4945 induced morphological changes accompanied by the accumulation of intracellular vacuoles and cell death, the level of macropinocytosis did not change. These intracellular vacuoles were identified as late macropinosomes, representing Rab7+ vesicles before fusion with lysosomes. In addition, CX-4945 suppressed LAMP2 expression following the inhibition of the Akt-mTOR signaling pathway, which interrupts mature macropinosome and lysosomal metabolic utilization. CONCLUSION: Macropinocytosis is used as an energy source in the KRAS mutant CCA cell line HuCCT1. The inhibition of CK2 by CX-4945 leads to cell death in HuCCT1 cells through alteration of the lysosome-dependent metabolism.


Bile Duct Neoplasms , Casein Kinase II , Cholangiocarcinoma , Lysosomes , Mutation , Naphthyridines , Phenazines , Pinocytosis , Piperazines , Proto-Oncogene Proteins p21(ras) , Humans , Lysosomes/metabolism , Cell Line, Tumor , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Pinocytosis/drug effects , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Casein Kinase II/metabolism , Casein Kinase II/genetics , Casein Kinase II/antagonists & inhibitors , Piperazines/pharmacology , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , rab7 GTP-Binding Proteins/metabolism , Cell Death/drug effects , Apoptosis/drug effects , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics
12.
J Med Chem ; 67(8): 6044-6051, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38621359

The GTPase KRAS acts as a switch in cellular signaling, transitioning between inactive GDP-bound and active GTP-bound states. In about 20% of human cancers, oncogenic RAS mutations disrupt this balance, favoring the active form and promoting proliferative signaling, thus rendering KRAS an appealing target for precision medicine in oncology. In 2013, Shokat and co-workers achieved a groundbreaking feat by covalently targeting a previously undiscovered allosteric pocket (switch II pocket (SWIIP)) of KRASG12C. This breakthrough led to the development and approval of sotorasib (AMG510) and adagrasib (MRTX849), revolutionizing the treatment of KRASG12C-dependent lung cancer. Recent achievements in targeting various KRASG12X mutants, using SWIIP as a key binding pocket, are discussed. Insights from successful KRASG12C targeting informed the design of molecules addressing other mutations, often in a covalent manner. These findings offer promise for innovative approaches in addressing commonly occurring KRAS mutations such as G12D, G12V, G12A, G12S, and G12R in various cancers.


Antineoplastic Agents , Piperazines , Proto-Oncogene Proteins p21(ras) , Pyridines , Pyrimidines , Humans , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mutation , Neoplasms/drug therapy , Animals
13.
Stem Cell Res Ther ; 15(1): 106, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627844

BACKGROUND: Although oncogenic RAS mutants are thought to exert mutagenic effects upon blood cells, it remains uncertain how a single oncogenic RAS impacts non-transformed multipotent hematopoietic stem or progenitor cells (HPCs). Such potential pre-malignant status may characterize HPCs in patients with RAS-associated autoimmune lymphoproliferative syndrome-like disease (RALD). This study sought to elucidate the biological and molecular alterations in human HPCs carrying monoallelic mutant KRAS (G13C) with no other oncogene mutations. METHODS: We utilized induced pluripotent stem cells (iPSCs) derived from two unrelated RALD patients. Isogenic HPC pairs harboring either wild-type KRAS or monoallelic KRAS (G13C) alone obtained following differentiation enabled reliable comparative analyses. The compound screening was conducted with an established platform using KRAS (G13C) iPSCs and differentiated HPCs. RESULTS: Cell culture assays revealed that monoallelic KRAS (G13C) impacted both myeloid differentiation and expansion characteristics of iPSC-derived HPCs. Comprehensive RNA-sequencing analysis depicted close clustering of HPC samples within the isogenic group, warranting that comparative studies should be performed within the same genetic background. When compared with no stimulation, iPSC-derived KRAS (G13C)-HPCs showed marked similarity with the wild-type isogenic control in transcriptomic profiles. After stimulation with cytokines, however, KRAS (G13C)-HPCs exhibited obvious aberrant cell-cycle and apoptosis responses, compatible with "dysregulated expansion," demonstrated by molecular and biological assessment. Increased BCL-xL expression was identified amongst other molecular changes unique to mutant HPCs. With screening platforms established for therapeutic intervention, we observed selective activity against KRAS (G13C)-HPC expansion in several candidate compounds, most notably in a MEK- and a BCL-2/BCL-xL-inhibitor. These two compounds demonstrated selective inhibitory effects on KRAS (G13C)-HPCs even with primary patient samples when combined. CONCLUSIONS: Our findings indicate that a monoallelic oncogenic KRAS can confer dysregulated expansion characteristics to non-transformed HPCs, which may constitute a pathological condition in RALD hematopoiesis. The use of iPSC-based screening platforms will lead to discovering treatments that enable selective inhibition of RAS-mutated HPC clones.


Induced Pluripotent Stem Cells , Humans , Cell Differentiation/genetics , Hematopoietic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
14.
Mol Cancer ; 23(1): 78, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643157

BACKGROUND: The identification of novel therapeutic strategies to overcome resistance to the MEK inhibitor trametinib in mutant KRAS lung adenocarcinoma (LUAD) is a challenge. This study analyzes the effects of trametinib on Id1 protein, a key factor involved in the KRAS oncogenic pathway, and investigates the role of Id1 in the acquired resistance to trametinib as well as the synergistic anticancer effect of trametinib combined with immunotherapy in KRAS-mutant LUAD. METHODS: We evaluated the effects of trametinib on KRAS-mutant LUAD by Western blot, RNA-seq and different syngeneic mouse models. Genetic modulation of Id1 expression was performed in KRAS-mutant LUAD cells by lentiviral or retroviral transductions of specific vectors. Cell viability was assessed by cell proliferation and colony formation assays. PD-L1 expression and apoptosis were measured by flow cytometry. The anti-tumor efficacy of the combined treatment with trametinib and PD-1 blockade was investigated in KRAS-mutant LUAD mouse models, and the effects on the tumor immune infiltrate were analyzed by flow cytometry and immunohistochemistry. RESULTS: We found that trametinib activates the proteasome-ubiquitin system to downregulate Id1 in KRAS-mutant LUAD tumors. Moreover, we found that Id1 plays a major role in the acquired resistance to trametinib treatment in KRAS-mutant LUAD cells. Using two preclinical syngeneic KRAS-mutant LUAD mouse models, we found that trametinib synergizes with PD-1/PD-L1 blockade to hamper lung cancer progression and increase survival. This anti-tumor activity depended on trametinib-mediated Id1 reduction and was associated with a less immunosuppressive tumor microenvironment and increased PD-L1 expression on tumor cells. CONCLUSIONS: Our data demonstrate that Id1 expression is involved in the resistance to trametinib and in the synergistic effect of trametinib with anti-PD-1 therapy in KRAS-mutant LUAD tumors. These findings suggest a potential therapeutic approach for immunotherapy-refractory KRAS-mutant lung cancers.


Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Pyridones , Pyrimidinones , Mice , Animals , Programmed Cell Death 1 Receptor , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Down-Regulation , Immune Checkpoint Inhibitors/therapeutic use , B7-H1 Antigen/metabolism , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma/genetics , Disease Models, Animal , Cell Line, Tumor , Tumor Microenvironment
15.
Nat Commun ; 15(1): 3149, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605037

Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism
16.
Methods Mol Biol ; 2797: 1-12, 2024.
Article En | MEDLINE | ID: mdl-38570448

RAS research has entered the world of translational and clinical science. Progress has been based on our appreciation of the role of RAS mutations in different types of cancer and the effects of these mutations on the biochemical, structural, and biophysical properties of the RAS proteins themselves, particularly KRAS, on which most attention has been focused. This knowledge base, while still growing, has enabled creative chemical approaches to targeting KRAS directly. Our understanding of RAS signaling pathways in normal and cancer cells plays an important role for developing RAS inhibitors but also continues to reveal new approaches to targeting RAS through disruption of signaling complexes and downstream pathways.


Antineoplastic Agents , Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mutation , Neoplasms/metabolism , Signal Transduction , Antineoplastic Agents/pharmacology
17.
Methods Mol Biol ; 2797: 67-90, 2024.
Article En | MEDLINE | ID: mdl-38570453

Molecular docking is a popular computational tool in drug discovery. Leveraging structural information, docking software predicts binding poses of small molecules to cavities on the surfaces of proteins. Virtual screening for ligand discovery is a useful application of docking software. In this chapter, using the enigmatic KRAS protein as an example system, we endeavor to teach the reader about best practices for performing molecular docking with UCSF DOCK. We discuss methods for virtual screening and docking molecules on KRAS. We present the following six points to optimize our docking setup for prosecuting a virtual screen: protein structure choice, pocket selection, optimization of the scoring function, modification of sampling spheres and sampling procedures, choosing an appropriate portion of chemical space to dock, and the choice of which top scoring molecules to pick for purchase.


Algorithms , Proto-Oncogene Proteins p21(ras) , Molecular Docking Simulation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Software , Proteins/chemistry , Drug Discovery , Ligands , Protein Binding , Binding Sites
18.
Methods Mol Biol ; 2797: 47-65, 2024.
Article En | MEDLINE | ID: mdl-38570452

RAS proteins play a vital role in regulating downstream signaling and essential cellular processes, positioning them as key players in normal cellular physiology and disease development. Among the various isoforms of RAS, KRAS stands out as one of the most frequently mutated genes in human cancer. The prevalence of RAS mutations in cancer often involves single amino acid substitutions at codons 12, 13, or 61. These mutations disrupt the RAS protein's inherent ability to transition between its active and inactive states, resulting in a constant activation signal and driving uncontrolled cell growth. Crystallization and structural analysis of KRAS with inhibitors and RAS-binding proteins play a pivotal role in unraveling the structural and mechanistic details of KRAS function, aiding in drug discovery efforts, and advancing our understanding of KRAS-driven diseases. Here, we present our experimental methodology for crystallizing KRAS in the presence of covalent or non-covalent small molecules and proteins acting as effectors or regulators of RAS. We detail the techniques for successful crystallization and the subsequent optimization of crystallization conditions. The resulting crystals and their structures will provide valuable insights into the key interactions between KRAS and its partner proteins or potential inhibitors, offering a foundation for developing targeted therapies that are more potent and selective against KRAS-driven cancers.


Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Carrier Proteins/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Signal Transduction , Neoplasms/genetics , Mutation
19.
Methods Mol Biol ; 2797: 177-193, 2024.
Article En | MEDLINE | ID: mdl-38570460

RAS is regulated by specific guanine nucleotide exchange factors, such as Son of Sevenless (SOS), that activates RAS by facilitating the exchange of inactive, GDP-bound RAS with GTP. The catalytic activity of SOS is known to be allosterically modulated by an active, GTP-bound RAS. However, it remains poorly understood how oncogenic RAS mutants interact with SOS and modulate its activity. In this chapter, we describe the application of native mass spectrometry (MS) to monitor the assembly of the catalytic domain of SOS (SOScat) with RAS and cancer-associated mutants. Results from this approach have led to the discovery of different molecular assemblies and distinct conformers of SOScat engaging KRAS. It was also found that KRASG13D exhibits high affinity for SOScat and is a potent allosteric modulator of its SOScat activity. KRASG13D-GTP can allosterically increase the nucleotide exchange rate of KRAS at the active site by more than twofold compared to the wild-type protein. Furthermore, small-molecule RAS•SOS disruptors fail to dissociate KRASG13D•SOScat complexes, underscoring the need for more potent disruptors targeting oncogenic RAS mutants. Taken together, native MS will be instrumental in better understanding the interaction between oncogenic RAS mutants and SOS, which is of crucial importance for development of improved therapeutics.


Nucleotides , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Catalytic Domain , Nucleotides/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/metabolism
20.
Cell Rep ; 43(4): 114033, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38568811

Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.


Bacterial Proteins , GTP Phosphohydrolases , Legionella pneumophila , MAP Kinase Signaling System , Membrane Proteins , Legionella pneumophila/metabolism , Legionella pneumophila/pathogenicity , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , GTP Phosphohydrolases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Down-Regulation , HEK293 Cells , Legionnaires' Disease/microbiology , Legionnaires' Disease/metabolism , Vacuoles/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics
...